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SUMMARY: 

This study numerically examined the effect of dense frequencies on the control effectiveness of a tuned mass 

damper (TMD) for vortex-induced vibration (VIV) of long-span bridges. The force-bridge-dampers system 

governing equations are derived considering a nonlinear vortex-excited (VEF) force in a polynomial form and 

simplified through a reduced-order modal expansion of the structural displacement. The study investigates the 

control effects of TMD for a certain mode VIV while taking into account the influences of other modes with similar 

frequencies. The results reveal that the TMD effectiveness might be overestimated when placed in the locations with 

significant modal displacement for other modes with similar frequencies. The study also discusses the number of 

modes to consider when designing a TMD to control VIV. 
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1. INTRODUCTION 

Vortex-induced vibration (VIV) is a self-excited vibration with finite amplitudes that typically 

occurs in long-span bridges at low wind speeds. If VIV persists for an extended period and has a 

relatively large amplitude, it can cause fatigue damage, discomfort to drivers, and even frighten 

the bridge users. As a result, it is necessary to use countermeasures to mitigate the VIV. Previous 

studies have described three approaches for suppressing VIV, namely structural, mechanical, and 

aerodynamic countermeasures (Fujino, 2013). Mechanical countermeasures effectively control 

VIV regardless of the shape of the bridge girder. The most popular mechanical countermeasure 

is a tuned mass damper (TMD), which consists of a mass block, a spring and a damping element. 

The design principles of a TMD attached to a single degree of freedom (DOF) structure under 

harmonic load have been thoroughly studied (Den Hartog, 1956; Yamaguchi, 1993). 

When multiple bridge modes might suffer from VIV, using multiple TMDs with mode-by-mode 

design is common practice. However, this method ignores the effects of secondary modes. Not 

considering several modes in the design of TMDs can lead to inaccurate results, especially for 

long-span bridges with dense frequencies. This study aims to numerically study the influence of 

various modes on the design of TMDs for VIV control of a long-span bridge considering 

nonlinear vortex-excitation.  
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2. GOVERNING EQUATIONS OF FORCE-BRIDGE-DAMPER SYSTEM 
Fig. 1 illustrates the layout of the force-bridge-dampers system, with 𝑥 and 𝑦 representing the spanwise 

and vertical coordinates, respectively. Only the vertical vibrations are considered, and we consider the 

vertex induced aerodynamic loads on the bridge girder. The mass element is attached to the bridge girder 

via a linear spring element and damping element for each TMD. The displacement of the girder is 

composed of multiple modes, shown as the red solid line and pink dashed line in the figure. 

 

 
 

Figure 1. Schematic diagram of the force-bridge-dampers system. 

 

The equation of motion of the force-bridge-dampers system is derived by the virtual work: 
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where 𝑚𝑠(𝑥), 𝑐𝑠(𝑥), and 𝐸𝐼(𝑥) represents the distributed mass, distributed damping coefficient, and 

bending stiffness of the bridge while 𝑚𝑗𝑑,𝐹𝑗𝑐(𝑡) and 𝐹𝑗𝑘(𝑡) are the mass element, damping force and 

stiffness force of the TMD. The symbol 𝑦𝑠(𝑥, 𝑡) represent the displacement of the bridge at the location 

of 𝑥, �̈�𝑗𝑑(𝑡) is the acceleration of TMD, and 𝛿𝑦𝑠(𝑥, 𝑡) and 𝛿𝑢𝑗𝑑(𝑥, 𝑡) are the virtual displacement of 

bridge and TMD. 

 

The structural motion can be decomposed into the summation of modal displacements using the 

superposition principle given by Eq. (3). 

 

𝑦𝑠(𝑥, 𝑡) = ∑𝜙𝑖(𝑥)𝜂𝑖(𝑡)

𝑛

, 𝛿𝑦𝑠(𝑥, 𝑡) = ∑𝛿𝜙𝑖(𝑥)𝜂𝑖(𝑡)

𝑛

 (3) 

 
where 𝜙𝑖(𝑥) is the mode shape of the 𝑖th mode of the bridge and 𝜂𝑖(𝑡) is the modal displacement. 

 

After some processing and organizing, the ordinary differential equations of motion of the force-bridge-

dampers system can be obtained as an 𝑛 + 𝑚 order matrix form: 

 
𝑀 ∙ �̈� + 𝐶 ∙ �̇� + 𝐾 ∙ 𝜂 = 𝐹wind(𝜂, �̇�), 𝜂 = [𝜂1 ⋯ 𝜂𝑛      𝑢1𝑑 ⋯ 𝑢𝑚𝑑]𝑇 (4) 

 
where the bridge is assumed to have 𝑛 modes and be equipped with 𝑚 TMDs. 

 

The vortex-excited force (VEF) is simulated using the polynomial model. The VEF acting on a specific 

mode of bridge can be expressed in the modal coordinates using the superposition principle. 
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Since VIV typically occurs in a specific mode, it is noted that the VEF is applied to one mode, despite the 

structure displacement having secondary components from other modes. 

 

3. NUMERICAL RESULTS 
A six-span non-navigational continuous bridge of the Shen-Zhong Link is used to demonstrate the impact 

dense natural frequencies have on the performance of the TMDs. Fig. 2 shows the vibration mode of the 

bridge. The example considers two vertical bending modes, with dense frequencies of 0.83 Hz and 

0.90Hz, respectively. The largest modal displacement of the first mode is almost consistent across all 

spans, while the modal displacement for the second one is larger in the side spans than in the two middle 

spans. The performance of one TMD is evaluated, and two possible locations are considered. The two 

points have identical modal displacements for the first mode. However, the modal displacement of the 

second mode in location 1 is significantly greater than in location 2. The vortex-induced force is acting on 

the first mode. The tuned mass damper is also designed to control the first mode and has a mass ratio of 

2%. The optimal frequency ratio (0.98) and damping ratio (0.086) of the tuned mass damper are 

determined based on the theoretical formula for a one-DOF system. The aerodynamic parameters are 

obtained from wind tunnel test conducted in the TJ-3 boundary layer wind tunnel at Tongji University. 

The following parameters are adopted:𝑚𝑚 = 22.2 kg s⁄ , 𝐷𝑚 = 0.667m, 𝑓 = 5.3Hz, 𝑎1 = 16.6. 

 

  
 

Figure 2. Two different locations of TMDs 

 

Fig. 3(a) presents the time histories of the point on the girder with the largest displacement after the 

installation of TMD in two different locations. It illustrates that the presence of mode two significantly 

impacts the calculated performance of the TMD. When the TMD is placed in location two, where the 

amplitude of mode two is small, the performance of the TMD is good. The figure also shows that a TMD 

placed in location one does not perform very well, despite both TMDs being in a point with the same 

modal displacement of mode one. The outcome at location one differs from the mode-by-mode design 

result, indicating the need for considering more modes to get a more accurate result, even when only 

controlling for one mode of vortex-induced vibrations (VIV). 

Further analysis of the optimal frequencies of the TMD in various locations on the girder is depicted in 

Fig. 3(b) and Fig. 3(c). The colour map indicates the maximum displacement after the installation of the 

TMD. For the middle spans, where mode 2 has small displacements, the optimal frequency is comparable 

to that in a structure with one DOF. However, in contrast to the results for the middle spans, the optimal 

frequency of TMD is significantly higher. This is because the amplitude of mode 2 is larger in the side 

spans. Fig. 3(b) reveals that the performance of the TMD is less robust when it is placed in the side spans 

and that the optimal location of the TMD may not be in the middle section of the side spans. Fig. 3(c) 

shows that this effect can be mitigated if the damping ratio of the TMD is increased.  

Fig. 3(d) shows a comparison of the maximum displacement of the girder when a various number of 



   

 

   

 

modes are considered. If two modes are considered, the calculated control effects are significantly 

reduced when TMD is installed on the side span. Including a third mode may also decrease the calculated 

control effects when TMD is placed on the middle spans, although the reduction in performance is less 

significant than that in the side spans. As the number of modes considered increases beyond 3, the 

reduction in control effects for TMD installed in any location along the bridge becomes insignificant and 

results become more accurate. A possible explanation for this might be that the frequencies of higher-

order modes are likely too high to have a notable impact on the TMD performance for the lower-order 

mode. Therefore, even though the VEF only acts on the first mode, it is important to consider at least the 

first 3 modes with dense frequencies when evaluating the control effects of TMD correctly. 

  

(a) Displacement histories (b) 𝜉𝑇𝑀𝐷 = 4.3% 

 
 

(c) 𝜉𝑇𝑀𝐷 = 14.3% (d) Maximum displacement of the girder 

 

Figure 3. Impact of dense frequencies on control effects of tuned mass damper and optimal parameters 

 

4. CONCLUSIONS 

This study examined the impact of dense frequencies on the control effectiveness of TMD with 

using numerical methods. The results indicated that the effectiveness decreases when located in 

the locations where there are significant modal displacements for the other modes with similar 

frequencies. When designing TMD for controlling VIV in a long-span bridge with one mode, 

more than three modes should be taken into account. Great care should be taken in selecting the 

number of modes to consider for the bridges with multi-mode VIV vibrations. 
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